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Camphor-derived sulfonylhydrazines proved to be very active for organocatalyzed Diels–Alder cyclo-
additions with cyclopentadiene. Good chemical yields and enantiomeric excesses up to 89% and 88%
are obtained for endo/exo adducts.
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Since the pioneering work of McMillan and co-workers,1 the
enantioselective organocatalytic Diels–Alder cycloadditions have
been the topic of intense research developed in all fields of this
reaction.2–9 With the background of our previous experience of
the use of camphor-derived chiral auxiliaries,10 we selected cam-
phor sulfonylhydrazine derivatives, which could be prepared from
the relatively cheap camphorsulfonic acid available in both enan-
tiomeric forms, as potential catalysts in aldol and Diels–Alder reac-
tions. During the course of this study, Ogilvie demonstrated the
usefulness of camphoric acid hydrazide derivatives in the organo-
catalyzed Diels–Alder cycloadditions11 and published a remarkable
study concerning the mechanism of the reaction.11b,c As demon-
strated by this author, the rigidity of this new catalyst as well as
the so-called a-effect12 explained its reactivity and selectivity.
The recent disclosure of camphorsulfonyl derivatives organocata-
lyzed Diels–Alder cycloadditions,13 prompts us to present our
own independent results in this field. According to Scheme 1,
camphorsulfonyl hydrazone 4a is prepared from (+)-camphorsul-
fonic acid 1 in almost quantitative yield in a sequence needing
no intermediate purification by a modification of the previous syn-
thesis.14 Cyanoborohydride reduction of hydrazone 4a afforded the
anticipated hydrazine 5a in 75% overall yield from 1.15

The efficiency of this new candidate for the Diels–Alder organ-
ocatalysis was further evaluated. The use of methanol as solvent
was precluded because, with a,b-unsaturated aldehydes, the corre-
sponding acetal adducts were isolated at the end of the reaction.1a

Screening of the best reaction conditions led us to select nitro-
methane as solvent and 0.5 N to 1 N perchloric acid to promote
the intermediate iminium formation. Under these conditions,
cycloaddition between cinnamaldehyde and cyclopentadiene in
the presence of 10% catalyst 5a afforded smoothly at room temper-
ature the corresponding adducts as a 40/60 mixture of endo–exo
isomers in 87% yield after 4 h.16 However, a moderate enantio-
selectivity was observed (ee endo: 30; ee exo: 62) (Table 1,
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entry 1). After only 1 h, these adducts were still isolated in 81%
yield, thus demonstrating the efficiency of the catalyst under these
reaction conditions (entry 2).

In order to compare the enantiomerically enriched adducts with
the racemic coumpounds, cycloadditions were also achieved under
the same reaction conditions in nitromethane with N,O-dimethyl
hydroxylamine hydrochloride 9 as catalyst. Thus, racemic adducts
were isolated for comparison as carbonyl derivatives, which is not
the case if methanol is used as solvent.12a

Introduction of a side chain at the N-sulfonyl nitrogen proved
crucial to improve the enantioselectivity. Accordingly, hydrazone
4a was in turn N-alkylated to furnish the substituted hydrazones
4b–e. Despite numerous experiments, in our hands, the cyano-
borohydride reduction of substituted hydrazones 4b–e was never
complete and the corresponding hydrazines 5b–e were isolated
along with starting material which was recycled (Scheme 1).15

Cycloadditions with the benzyl-substituted hydrazine 5b were
achieved within 2 h in 73% yield and an increased enantioselectiv-
ity (ee endo: 87; ee exo: 85) (entry 3).

The absolute configuration of these endo and exo adducts was
deduced after comparison by chiral GC analysis with the corre-
sponding compounds obtained with the MacMillan catalyst.1a

Thus, for the endo adduct, for instance, the same type of transition
state model already proposed by Ogilvie and co-workers11c can be
proposed for these cycloadditions (Fig. 1).

The amount of catalyst 5b can be diminished to 2% and afforded
after 16 h a mixture of adducts in 66% yield, however, with lower
enantioselectivity (entry 5). With lower amount of catalyst
(0.5%), both yield and enantioselectivity decreased dramatically
(entry 6). The absence of any chiral induction for the endo isomer
suggests that this compound could be the result of a cycloaddition
catalyzed with perchloric acid (Scheme 2).

The influence of modifications of the benzyl unit on the reactiv-
ity and on the selectivity of the catalyst was then studied. Results
are summarized in Table 1. With the 4-bromo benzyl derivative 5c
slightly better enantioselectivities were obtained (entry 7). How-
ever, introduction of electron-donating substituents in catalysts
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Table 1
Cycloadditions between cinnamaldehyde and cyclopentadiene
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MeNO2, RT

, HClO4(0.5N)

Entry Cat. (%) Time (h) Yield (%) endo/exoa ee (%) endo/exoa

1 5a (10) 4 87 40/60 30/62
2 5a (10) 1 81 40/60 n.d.b

3 5b (10) 2 73 40/60 87/85
4 5b (5) 2 51 50/50 72/82
5 5b (2) 16 66 56/44 46/70
6 5b (0.5) 5 20 70/30 0/40
7 5c (10) 20 52 50/50 89/88
8 5d (10) 36 32 60/40 20/82
9 5e (6) 24 60 65/35 26/88

10 5f (10) 48 11 93/7 0/0
11 8 (5) 28 73 44/56 30/20
12 9 (20) 24 32 36/64 —
13 None 26c 6 58/42 —

a Determined by GC with QC3/Cydex B, 25 m, OD 0.43 mm, film thickness 0.25 l.
b Non-determined.
c Temperature 70 �C.
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5fh : R1 = H; R2 = p-BrC6H4CH2
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Scheme 1. Reagents and conditions: (a) SOCl2 (neat), 80 �C, 3 h; (b) NH2NH2 (4 equiv), Et3N, CH2Cl2, 20 h, rt; (c) PhMe, 80 �C, 3 h; (d) KHMDS, THF, ArCH2Br, �78 �C to 20 �C,
20 h; (e) NaBH3CN (3 equiv), THF/MeOH, MeOH/HCl 1 N, 0 �C; (f) NaBH3CN (10 equiv), AcOH/MeOH, rt; (g) PhCHO (1,1 equiv), tBuOK (4 equiv), PhMe, 80 �C 20 h; (h) see Ref.
17.
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5d and 5e which could stabilize the iminium intermediate main-
tains the same range of enantioselectivity for the exo isomer but
decreased significantly the ee value for the endo isomers (entries
8 and 9). This observation is not easily rationalized. In contrast
with the results observed by Lee and co-workers,13 when the basic
S
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+

Figure 1.
nitrogen is substituted in compound 5f,17 under our reaction con-
ditions, racemic adducts were isolated in low yield (entry 10). We
also examined the influence of introduction of an additional substi-
tuent in a to the basic nitrogen. Thus, crotonization between (+)-
camphorsulfonic acid 1 and benzaldehyde gave benzylidene cam-
phorsulfonic acid 6.18 After the same sequence of reactions, this
compound afforded the anticipated benzylidene hydrazine deriva-
tive 8. However, this catalyst gave disappointing results and the
enantioselectivity was rather poor for both adducts (Table 1, entry
11).

Other Diels–Alder cycloadditions were subsequently examined
with these catalysts with different a,b-unsaturated aldehydes
and ketones. The results are summarized in Table 2. With the less



Table 2
Cycloadditions between dienophiles 10b–13 and cyclopentadiene

Entry Cat. (%) Dienophile Time (h) Yield (%) endo/exo ee (%) endo/exo

1 5b (10) 10b 24 68 42/58 —/78
2 9 (20) 10b 36 10 54/46 —
3 5b (10) 11a 24 88 68/32 40/—
4 9 (20) 11a 28 72 47/53 —
5 5b (10) 11b 20 95 74/26 26/42
6 8 (5) 11b 24 67 70/30 0/0
7 9 (20) 11b 20 57 60/40 —
8 5a (20) 12a 3 75 97/3 0/0
9 5b (5) 12b 24 56 95/5 0/0

10 9 (20) 12b 20 90 94/6 —
11 8 (5) 12b 20 96 95/5 0/0
12 5a (10) 13 5 28 93/7 34/—
13 5b (10) 13 20 62 95/5 0/—
14a 5b (10) 10a 2 73 40/60 87/85

a This experiment (Table 1, entry 3) has been added for comparison.
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reactive p-methoxy cinnamaldehyde 10b, catalyst 5b gave signifi-
cantly lower ee than with the unsusbstituted aldehyde 10a (entry
1). In the aliphatic series with catalyst 5b an increase of endo/exo
ratio was observed but the enantioselectity is dramatically reduced
for both adducts (entries 3 and 5). With the benzylidene catalyst 8,
racemic adducts were isolated (entries 6 and 11).

With a,b-unsaturated ketones as dienophiles, only the Mac Mil-
lan catalyst1b has given good stereoselectivity in organocatalyzed
Diels–Alder cycloadditions. It turned out that in our case, no
enantioselectivity was observed. In contrast to the observation of
Mac Millan,1b in our conditions, the use of hexenone 12b instead
of pentenone 12a19 did not improve the enantioselectivity (entries
8, 9, and 11). Nevertheless, high endo selectivity and often good
yields were obtained (entries 8 and 9–11). The case of cyclopente-
none 13 is not worthy, with catalyst 5a, the endo adduct was ob-
tained with 30% ee (entry 12) but with 5b, the same adduct was
found to be racemic.

In summary, under our reaction conditions, camphor-derived
sulfonyl hydrazines, easily prepared from camphorsulfonic acid,
showed to be very active organocatalysts in Diels–Alder cycloaddi-
tions. Racemic adducts were easily prepared for comparison with
N,O-dimethyl hydroxylamine as catalyst. As often with other
organocatalysts, the endo/exo selectivity as well as the enantio-
selectivity are difficult to be rationalized. Endo and exo adducts
are probably obtained with different relative kinetic constants.
Further studies towards the synthesis of supported camphor-
derived organocatalysts are in current development.
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